Smart Reduction

Frédéric Lang

INRIA and LIG / VASY

http://vasy.inria.fr

joint work with Pepijn Crouzen (Saarland University)

FASE 2011 - March 30, 2011

Context

- Explicit-state verification of concurrent systems
 - Parallel composition of asynchronous processes
 - Synchronisation and/or interleaving of actions
 - Systematic exploration of the behaviour graph
- Compositional verification
 - Technique to palliate state explosion
 - Apply property preserving abstractions to the graphs of the composed processes (incremental)
 - In our case : reductions modulo graph equivalences (strong bisimulation, branching bisimulation, etc.)

Incremental reduction

FASE 2011 - March 30, 2011

Process subset selection

- A careful selection may avoid intermediate graph explosion
- Possibly many individual processes: automated selection is needed
- Use metrics
 - Tai & Koppol 1993
 - Composition of *Finite State Machines*
 - Deterministic binary synchronisation (CCS-like)
 - Crouzen & Hermanns 2010
 - Refine the metrics, apply to performance models
 - Deterministic multiway synchronisation (CSP-like)

Process subset composition

• Easy with binary associative and commutative parallel composition operators (previous work):

 $\mathsf{I} \subseteq \mathsf{J} \Longrightarrow \big| \big|_{j \in \mathsf{J}} \mathsf{P}_j = (\big| \big|_{i \in \mathsf{I}} \mathsf{P}_i) \big| \big| (\big| \big|_{j \in \mathsf{J} \setminus \mathsf{I}} \mathsf{P}_j)$

• But... parallel composition operators are not necessarily associative...

Example (LOTOS): $P_1 | [a] | (P_2 | | | P_3) \neq (P_1 | [a] | P_2) | | | P_3$

• ... and not even binary

Example (E-LOTOS): par a#2, a#3 in P₁ || P₂ || P₃ end par

 Synchronization may be both nondeterministic and multiway (useful to write more concise models)

Contributions

- Extension of incremental reduction to *Networks* of Labelled Transition Systems, a composition model that subsumes most forms of synchronizations (including nondeterministic multiway synchronization)
- Refinement of the selection metrics
- Implementation in the CADP toolbox: the smart reduction operator
- Experiments on various case-studies

Individual processes

- Represented as LTS (Labelled Transition Systems)
- Example

Network of LTS

- Inspired by MEC and FC2
- Subsume many composition models CCS, CSP, LOTOS, E-LOTOS/LOTOS NT, mCRL, synch. vectors, ...
- Of the form ((P_1, \ldots, P_n), V) where:
 - P₁, ..., P_n are LTS (individual processes)
 - V is a set of synchronization rules
- Each rule has the form $(a_1, \ldots, a_n) \rightarrow b$ where:
 - a_i is either a label or the special symbol •
 - *b* is a label

Semantics of networks

- Operational: An LTS
 - State: vector (s_1, \ldots, s_n) of local states s_i
 - Transition: $(s_1, \ldots, s_n) \xrightarrow{b} (s'_1, \ldots, s'_n)$ iff:
 - V has a synchronization rule $(a_1, \ldots, a_n) \rightarrow b$, and
 - $s_i \xrightarrow{a_i} s'_i$ (for each $a_i \neq \bullet$), and
 - $S_i = S'_i$ (foreach $a_i = \bullet$)
- Static: internal action τ cannot be cut, renamed, or synchronised (easy syntactic check of synch. rules that contain τ)

Example (1/2)

• P₁, P₂, and P₃ (defined earlier) synchronised following:

$$\begin{array}{ccc} (a, a, \bullet) \rightarrow a \\ (a, \bullet, a) \rightarrow a \end{array} \\ \text{nondeterministic} \\ (b, b, b) \rightarrow b \end{array} \\ \text{multiway} \\ (c, c, \bullet) \rightarrow \tau \end{array} \\ \text{hidden} \\ (\bullet, \bullet, d) \rightarrow d \end{array}$$

Same LTS as LOTOS
 hide c in

 (P₁ | [a, b, c] | (P₂ | [b] | P₃))

 $\frac{1}{2} | [b] | P_3)$

Example (2/2)

- The LTS of the network has 15 states and 17 transitions
- The LTS reduced modulo branching bisimulation has
 7 states and 7 transitions

RINRIA

Incremental reduction of networks

- Let N be a network
- Each reduction step requires four operations:
 - Select a subset I of the individual LTS of N
 - Extract a new network N_p(I) modeling the composition of the LTS inside I
 - Compute the reduced LTS P_p of $N_p(I)$
 - Extract a network N_a(I) modeling the composition of P_p with the LTS outside I

Extraction of N_p(I)

- Projection of N on to the LTS inside I
- Use intermediate labels (X_1, X_2, \ldots) for rules that synchronize LTS both inside and outside I
- **Example**: $I = \{P_1, P_2\}$

extract

Extraction of N_a(I)

- Composition of the (reduced) LTS of N_p(I) with the LTS outside I
- Use the same intermediate labels as before
- **Example:** $I = \{P_1, P_2\}$

extract

RINRIA

FASE 2011 - March 30, 2011

VASY 15

LTS corresponding to N_a(I) (composition of reduced LTS in previous slide with P₃) <u>8 states</u>, <u>8 transitions</u>

Largest intermediate LTS now: 12 states, 12 transitions instead of 15 states, 17 transitions

Remarks (1/2)

• LTS selection is crucial to reduce the largest intermediate LTS size

	Largest intermediate LTS		
{P ₁ , P ₂ }	12 states, 12 transitions		
{P ₁ , P ₃ }	19 states, 23 transition		
{P ₂ , P ₃ }	18 states, 34 transitions		
{P ₁ , P ₂ , P ₃ }	15 states, 17 transitions		

In this example {P₁, P₂} is the optimal selection

Remarks (2/2)

- Composition of P₁ and P₂ (optimal selection) is not expressible in LOTOS
 - No subterm in (P₁ |[a, b, c] | (P₂ |[b] | P₃)) with P₁ and P₂ only
 - Associating terms otherwise changes semantics,
 e.g., ((P₁ | [a, b, c] | P₂) | [b] | P₃)
- Networks enable any subset of LTS to be composed

LTS selection

- Apply a metric on I to:
 - Maximize the amount of transitions in $N_p(I)$ that are hidden (likely to disappear by reduction)
 - Minimize the amount of transitions in the individual LTS of N_p(I) that interleave
- Use a worst case estimate of transition numbers
 - count all transitions, reachable and unreachable
 - Doing better requires reachability analysis: the problem we are trying to solve

The metric for networks

• Use a combined metric CM(I) =

transitions of N_p(I) hidden from LTS outside I

transitions of N_p(I)

• Interleaving Rate IR(I)

Hiding Rate HR(I)

transitions of $N_p(I)$

transitions in nonsynchronized product of LTS inside I

Accounting for interleaving

• Full interleaving

A local transition that is **not synchronized**: $(a_1, \ldots, a_n) \rightarrow b$ where exactly one a_i is a label (the rest are •)

• Partial interleaving

Synchronization does not involve all LTS:

 $(a_1, \ldots, a_n) \rightarrow b$ where at least one a_i is \bullet

- Previous metrics account for full interleaving only
- Refinement: Our interleaving metric also accounts for partial interleaving

Example

I	HR(I) / I	(1 - IR(I)) / I	CM(I)
{P ₁ , P ₂ }	0,211	0,357	0,568
$\{P_1, P_3\}$	0,000	0,227	0,227
{P ₂ , P ₃ }	0,000	0,124	0,124
{P ₁ , P ₂ , P ₃ }	0,129	0,249	0,378

 $CM(\{P_1, P_2\}) > CM(\{P_1, P_2, P_3\}) > CM(\{P_1, P_3\}) > CM(\{P_2, P_3\})$

12 trans. < 17 trans. < 23 trans. < 34 trans.

Implementation in CADP (1/2)

- CADP: A toolbox for analyzing asynchronous systems using formal methods
 - Specification, Explicit-state verification, simulation, ...
 - Contains more than 45 tools and 22 code libraries
- Support for compositional verification:
 - Bcg_Min 2.0 tool for LTS reduction
 - Exp.Open 2.0 tool for networks of LTS represented using numerous operators
 - SVL language and compiler for scripting verification scenarios

- ...

Implementation in CADP (2/2)

- New operator smart reduction in SVL Example
 - % DEFAULT_LOTOS_FILE="proc.lotos"
 - % DEFAULT_SMART_LIMIT=3
 - "p123.bcg" = **smart branching reduction of**
 - hide c in (P1 |[a, b, c] | (P2 |[b] | P3));
- SVL delegates work to EXP.OPEN 2.0
 - Metric computation and process selection
 - Network extractions

Experimental results (1/2)

- Smart branching reduction was compared on 28 examples with
 - node branching reduction: compose LTS pairwise (syntactic order)
 - root leaf branching reduction: compose all LTS at once
- Example: Dynamic Fault Tree
 - 635,235 transitions using node reduction
 - 117,772 transitions using root leaf reduction
 - 346 transitions using smart reduction

Experimental results (2/2)

- Of course, smart reduction does not always make the optimal LTS selection
 - There are unreachable transitions (how much?)
 - Branching reduction does not remove all internal transitions
 - Hiding and interleaving rates may cancel each other out
 - Compositional reduction may prevent partial order reductions otherwise possible using root leaf reduction
 - ...
- Combining the hiding and interleaving rates generally prevents bad selections

Conclusions

- A fully automated verification technique
 - Appropriate to models with many processes
 - Saves time in the verification task
- Refines previous work
 - Network model subsumes many composition models and elaborate forms of synchronisation
 - Network model enables any subset of processes to be selected
 - Metric accounts better for process interleaving
- Implementation available in CADP

http://vasy.inria.fr/cadp

Want to know more about CADP? Attend Hubert Garavel's TACAS presentation

CADP 2010: a toolbox for the construction and analysis of distributed processes

Thursday, March 31 at 12:00

